The history of ionic liquids (ILs) effectively started in 1914, when the physical properties of ethylammonium nitrate ([CH3CH2NH3+][NO3-], m.p. 13-14 °C) were first reported. ILs are generally defined as salts composed of discrete cations and anions with melting points below 100 °C, and many are liquid at ambient temperature. IL research has grown rapidly over the past decade because they have many unique properties such as negligible vapor pressure and outstanding solvation potential. In addition, their physical and chemical properties can be finely tuned by varying both the cation and anion.

Our research has focused on accurately measuring vapor-liquid equilibria (VLE) and vapor-liquid-liquid equilibria (VLLE) and using thermodynamic models to understand the phase behavior of binary gas mixtures in ILs. This presentation will focus on the importance of characterizing the global phase behavior of gases in ionic liquids and how this can provide insight into new applications. Solubility measurements of several gases in ILs will be discussed and important experimental details regarding VLE measurements using a gravimetric microbalance and VLLE measurements using a mass-volume technique will be highlighted. VLE data have been successfully correlated with a modified Redlich-Kwong equation of state (EOS), and in certain cases (e.g. hydrofluorocarbons) the EOS predicts partial immiscibilities (LLE) with lower critical solution temperatures (LCSTs) in the fluorocarbon-rich side solutions. We have also found that gases such as CO2 can exhibit different solubility behaviors in ILs (i.e. physical and chemical absorption) and that these behaviors can be analyzed with the EOS using a simple association model and excess thermodynamic functions.

Knowledge of gas and IL phase behavior has led to several practical applications including separation of azeotropic gas mixtures, absorption cooling and removal of CO2 from flue gas. These along with other interesting examples from the literature will be discussed.

Ionic Liquids: Phase Behavior to Applications

Mark Shiflett received his Ph.D. (2008) and M.S. (1998) degrees in chemical engineering from the University of Delaware. He received his B.S. degree in chemical engineering from N.C. State University in 1989. Mark has worked for the DuPont Company for 27 years. He is an inventor on 39 U.S. patents and has published 67 articles on his research at DuPont. He was awarded the DuPont Bolton Carothers award in 2005, the ACS Hero of Chemistry award in 2006, and the University of Delaware presidential citation in 2007 for his development of hydrofluorocarbon refrigerant mixtures to replace chlorofluorocarbons which were linked to the depletion of the Earth’s ozone layer. Mark was elected in 2014 to be a Fellow in the AIChE for his significant professional accomplishments and contributions to the chemical engineering profession. He recently organized and co-chaired the 2nd International Conference on Ionic Liquids in Separations and Purification Technology (Toronto, Canada). Mark is an adjunct professor at the University of Delaware in the Department of Chemical and Biomolecular Engineering.